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Abstnct-A method is developed for qualitatively sketching the frequency spectrum of torsional waves
propagating in a solid cylinder with periodic structure. This method introduces an interfacial elastic
parameter, analogous to an impedance, which simplifies the problem considerably.

INTRODUCTION
The analysis of wave propagation in periodic elastic structures, Le. structures in which the
elastic constants of the material vary in a periodic manner, is of great interest due to the
presence of passing and stopping frequency bands in such structures. While such an analysis is
in general quite complicated, closed form solutions have recently been obtained for a number of
simpler problems. It is the purpose of this study to discuss an alternative approach to such
problems which may be of some value in gaining physical insight into the properties of the
solution and in qualitatively "sketching" the frequency spectrum with reduced effort.

FORMULATION OF BASIC PROBLEM

One common physical case studied so far is that of torsional elastic wave propagation in a
bi-element composite circular cylinder, either solid, Ref.[l}, or hollow, Ref.[2}. The outer (and
inner, if present) boundaries are taken as stress free. The prismatic cylinder is assumed to be
infinite in length, Izi < 00, and consists of two homogeneous elements, comprising region I of
length I, density p and shear modulus jJ. and region II of length l', density p' and shear modulus
jJ.', repeated periodically in the axial (z) direction with a unit cell size dE (I +1'). Such a
problem has only a single displacement component, V,. independent of the 8 coordinate in a
cyiindrical coordinate system (r, 8, z), This displacement component satisfies a wave equation
with phase speed c = (p./p)1f2 and c' = (jJ.'/p,)I12 in regions I and II respectively. We choose the
z coordinate positive to the right and assume a time harmonic dependence proportional to exp
( - iwt), where w is the angular frequency in radians per unit of time.

In this simple example, the governing field equation readily separates in (r, z) to give
tangential component of displacement in the form:

(a) Region 1,0< z< I:

vi =[A sin (Azli) +B cos (Az/l)}ZI(Kr/a) exp (- iwt),

(b) Region II, -I'<z<O;

V,rr =[A' sin (A'z/l')+ B' cos (A'z/l')}ZII(K'r/a) exp( - iwt).

(I)

We take the outer radius of the cylinder to be a, the inner radius (if one exists) b, the half
thickness h = (a - b)/2 and n= w/w, where w, = lI'c/2h is the lowest thickness shear frequency
of an infinite, isotropic, homogeneous plate of half thickness, h, mass density, p, and shear
modulus, jJ.. We have condensed the notation (which corresponds to [l} and (2» by introducing
K -lI'ka/2h, K' -lI'k'a/2h, A-lI'fi/2h, A' -1I'(1'/2h. The radial solutions, Z, are given by

ZI = (2/K)J1(Kr/a) K2 2::0

=(2/K)I\(Kr/a) K2 SO (2)

=ria K
2 =0

m
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Zl = (21 I< )11(l<rla) - (1T1<12)DYI(l<rla) 1<2;;;: 0

= (211<)Ml<rla) + I<DK1(I<r/a) 1<2 sO

= ria +Dalr 1<2=0

for'the hollow cylinder with similar equations for Zll in terms of 1<' and D' and where

(3)

(/Kla)2 +A2 =(/wlci

(I'I<'la)2+ A,2 =(I'wIC')2

or k2+e2 =fi2,

or k'2 +f2 =(clc')2fi2. (4)

The radial boundary conditions require zero shear stress, 1r6 =W8[V,/r]/8r, on the outer
surface r = a and either zero shear stress on the inner surface r = b for the hollow cylinder or a
bounded displacement at the origin 0+ for the solid cylinder (this was already implied in the
form of Z used above for the solid cylinder).

For the solid cylinder, the radial boundary condition requires

lil<)=O, (5)

for 1<2;;;: 0 and has no roots for 1<2 <O. Roots of this transcendental equation as given in [3] are
1<0 = 0, 1<1 = 5.1356, 1<2 = 8.4172, etc.

For the hollow cylinder, the boundary conditions require

12(1<) Y2(KI) - 12(1<1) Y2(K) =0, t I!E b/a

D. (111<2/4) Y2(1<)/12(1<), (6)

for 1<2> 0 and no solution for 1<2 <O. Roots of this transcendental equation must be calculated
as a function of I. For I =1/3, 1<1 =1.1892, 1<2 =2.1160, 1<) =3.0811, etc. and for t =1/2,
1<1 =1.08446, 1<2 =2.04602, 1<)3.03122, etc. Similar results hold for 1<'.

The remaining boundary conditions apply to surfaces of constant z. The origin and direction
of the z axis are arbitrary; we choose z=0 at the interface between regions II and I and first
require continuity of V, and 1., = p.8V'/8z. This leads to the conditions

where

pA=p'A', B=B', (7)

The remaining interfacial condition is a quasi-periodicity condition which, by Floquet's
theorem, requires the wave amplitude to have the same periodic structure as that of the elastic
medium, in order to have a solution

V,(r, z, t) = w(r, z) exp i( ')'Z - wi),

where w is periodic in z with periodicity d, i.e., w(r, z+d) = w(r, z) and')' is the FIoquet's wave
number corresponding to the phase shift, which has to be determined from the solution of the
problem.

This leads to the quasi-periodic conditions

(a)

(b)

V,'(r, I, I) =Vl'(r, -I', I) exp i')'d,

7:,(r, I, t) =7:~(r, -I', t) exp i')'d, (8)
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where for convenience we have dropped explicit time harmonic dependence exp (- iwt).

Equation (8) implies Z'(Kr/a)==ZIJ(K'r/a), i.e. K == K'; and

(a)

(b)

A sin,A +B cos A=[-A' sin A' +B' cos A'] exp i'Yd,

v[Acos A- B sin A] =v'[A' cos A' + B' sin A'] exp i'Yd. (9)

INTERFACIAL PARAMETER

While the problem is completely formulated at this point and has indeed been solved in this
form in Refs. [1,2], we introduce a slight modification in the variables of the problem

We introduce the "interfacial elastic parameter", Q, as the ratio of stress to displacement at
an interface. Clearly Q is continuous throughout the rod. Consider first Qlzao == Qo defined as

Qo =7'z,(O)1 U,(O) ::: vAlB =v'A'IB'.

Equations (9a) and (9b) may then be rewritten as

(10)

(a)

(b)

B(Qo sin A+ 11 cos A) =B'(v!v')[- Qo sin A' + v' cos A'] exp(iyd),

B(Qo cos A- v sin 'Y) =B'[Qo cos A' + 11' sin A'] exp (i'Yd). (1)

Consistency of these two homogeneous equations requires that the determinant of the
coefficients be zero. This leads us to the frequency equation

Qo2(lI' sin Acos A' +v sin A' cos A] +QO(lI,2 - 112) sin A sin A'

+ lIV'(v' sin A' cos A+ v sin A cos A') = 0, 0S Qo <lXI. (12)

On the other hand, we may eliminate Qo from eqn (11) by using eqn (10) and then obtain the
usual dispersion equation.

[exp (iyd)]2 +(v!1I' + lI'lv) sin Asin A' - 2cos Acos A'] exp (i'Yd) +1=0, (3)

which relates Floquet wave number 'Y to the axial wave numbers Aand A'. Clearly, the second
order equation has two solutions whose product is unity and whose sum is

d I 1( 11 V'). • ,cos 'Y =cos A cos A - 2 ;;+-; sm Asm A. (14)

If we examine the completely homogeneous case, I =l', /L =/L', P=p', f =~' and 11 =v', we
get the solutions 'Y =±(1Tld)(f/lh ±2n), n =0,1,2, .... On the extended zone scheme we select
n =0, and therefore the two values for 'Y =± 1Tf/2h =±AII are real and simply represent the
two directions in which torsional waves can propagate with no change in amplitude. This is best
seen by examining the form of the z dependence in the tangential component of displacement

U, =B[(AIB) sin (AzII) +cos (Az/l)}Z(lCrfa),

where, from eqn 00) it can easily be shown that

A/B=QoIv=±i.

Hence, as expected

U, =B[cos(Az/l) ± i sin (Az/l)]Z(Kr/a),

= B exp (± iAz//)Z(Kr/a),

and represents the two directions in which the torsional wave can propagate without change of
form.



780 R. P. SHAW and R. K. KAUL

SPECIAL VALUES FOR INTERFACIAL PARAMETER

While there may be no general advantage in calculating Qo for a given n and then
calculating y etc. there are some special circumstances where the introduction of Qo is useful.
Consider first the limiting cases when Qo tends to 0 or OC, corresponding to zero stress or zero
displacement, respectively, at z =O. The former, Qo =0 leads to (if cos A and cos A' are
non-zero)

1
cos yd = 2<cos A'Icos A+cos Alcos A'),

vi = B cos (Az/l)Z(Kr!a),

v,u = B cos (A'zll')Z(Krla).

(a)

(b)

(c)

(d)

v tan A+ v' tan A' = 0, v,v' #- 0

(15)

Similarly, for Qo = oc, we have (if sin Aand sin A' are non-zero)

1
cos yd = icos A'Icos A+cos Alcos A'),

vi = A sin (Az/l)Z(Kr!a),

v,u = A(vlv') sin (A'z/l')Z(Krla).

(a)

(b)

(c)

(d)

v cot A+II' cot A' = 0, 11,11' #- 0

(16)

These frequency equations for Qo = 0 and co, are not only simpler to solve than the general set,
they are formally of the same structure as the frequency equations for the endpoints of the
Brillouin zones which define the passing and stopping bands. Equations at the zone ends are
obtained by setting exp(iyd) = ±1 in eqn (13); these are the cut-off points where y changes
from real to imaginary values. For exp (iyd) = + 1, this has solutions with a period d at frequencies
defined by

(a)

(b)

II tan (A{2) + v' tan (A '/2) = 0,

v tan (A'/2) + v' tan (Al2) = 0, (17)

and for exp (iyd) = -1, it has solutions of period 2d at frequencies defined by

(a)

(b)

v tan (A{2) - v' cot (A '/2) = 0,

II cot (A{2) - II' tan (A'/2) = O. (18)

We thus see that wave numbers satisfying eqn (15a) are one-half that satisfying eqn (17a); that
for eqn (16a) are one-half the wave numbers satisfying eqn (17b).

It may be pointed out that Qo satisfies a quadratic equation, and for a fixed K and given
values of (0, y), there are always two values of Qo. Thus

QO(2) = II tan A=-II'tanA', (18a)

are the two roots of eqn (12) in the presence of the constraining eqn (15a). The displacement
field in the second case is

Similarly

vi = A esc Acos A(zll-1)Z(Krla),

v,u = - A' esc A' cos A'(zll' + l)Z(Kr!a). (19a)

QO(2) = - v cot A= II' cot A', (18b)
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are the two roots of the same equation in the presence of the constraining eqn (161). The
displacement field in the second case is

U,' =A sec Asin A(z/l- J)Z(I<r!a),

Ul' =A' sec A' sin A'(z/l' +1)Z(l<r/a). (19b)

In each of these four cases the Ploquet number y is governed by the same eqn (lSa).
These "second" solutions correspond to the same problem with the z origin shifted by one

segment, e.g. by I. For example, the solution for 00(1) =0 corresponds to a zero shear stress at z
equal to zero while the "second" solution, 00(%) = ., tan A, corresponds to a zero shear stress at
z =I, etc.
The equation (lSb = 16b) can be rewritten as

sin (yd/2) =±~«COs Alcos A,)ln- (cos A'/cos A)ln),

Icos (yd/2) =±~«cos Alcos A')Jn+(cos A'/cos A)ln),

and therefore we see that at the end points of the Brillouin zones

cosA'-cosA =0 when yd=0,2'11",4'lT, ...

cos A' +cos A=0 when yd = '11",3'11",511', .••

Thus on the left end of the zone

A' =A± 11,'11"" n, =0,2,4, .•.

and on the right end of the zone

A'=A±TIo'll", 110=1,3,5, ...

(20)

(21)

(22a)

(22b)

Consider now the case when 00 = O. On the left end of the zone cos A' = cos Aimplies sin
A' = sin Aand therefore from eqn (lSa)

(v+ .,') tan A= O.

Consequently, either (., + v') =0, or sin A=O. Hence, either

A=± 1T11J[(p./p.')(/'/l) +1], or A=m11', m =0, J, 2, ...

(23)

(24)

Knowing Afrom this equation, we can now find A' from eqn (22a). However, in the second
case, 11, in eqn (22a) and m in eqn (24h, cannot both be arbitrary since from eqn (4)

(25)

When 00 = ce, we find from eqns (21)1 and (l6a) that

(.,+ v') cot A=0,

and therefore, either (., +.,') = 0, or cos A =O. Hence, in this case either

A=±1T11J[(p./p.')(/'/I)+ I), or A= m1T/2, m =J, 3, 5, ••• (26)

On the right end of the zone, we have simply to replace the integers 11, by 110 to obtain
corresponding formulas for Aand A' when 00 = 0 or 00 =ce.
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It is easy to see that in the interior of the Brillouin zone 0< 'Yd < 11'. 'Yd is always complex
for real values of Aand A'. A'I: A'. This follows immediately from the fact that eqn (15b) can be
rewritten as

exp iyd =cos Alcos A'. (27)

We therefore conclude that when Qo = 0 (stress-free interface), or when Qu =x (displacement
free interface) torsional waves cannot be propagated in a prismatic cylinder with periodic
structure and are therefore damped out.

We now consider those values of Qo which lead to information concerning frequencies in
the passing band. From eqn (12) we find that when Qo =:t iv'

and when Qo = :tiv

v'(v2- v,2) sin Aexp (± iA') =O.

v( v2 - V'2) sin A' exp (:t iA) =O.

(28)

(29)

We assume that v;6 v', v;6 0 and v';6 O. Then for Qo =:tiv', sin A= 0 and in accordance with
eqn (14) cos 'Yd =:tcos A'. Therefore

A ='1'111', '1'1 =0,1,2, ... 'Yd =A' ± m11', m=0,1,2, ... (30)

It therefore follows from eqn (4) that

0 2 =k2+ (2'1'1hll)2

(clc')202 =k2+(2hI11'l')2( 'Yd ± m11')2. (31)

For every value of radial wave number k, these two equations determine a unique value of 0
and 'Y. Plotting 0 vs 'Yd, the first equation gives us lines of constant 0 for every given k and for
different values of '1'1. The second equation gives us a series of hyperbolas (or straight lines
when ko=0). Starting with the cut-off frequencies when 'Yd = O. the real branches of the
dispersion curves lie between the bounds defined by eqn (31). The dispersion curve will cross
the bounds only at points of intersection, where Qo = ± iv'.

Another independent set of bounds can similarly be found when Qo =±iv, leading to sin
A' = O. In this case the two equations of the bounds are

(elC')202 = k2 +(2'1'1h/l'?,

02 =k2+(2hI11'/)2( 'Yd ± m11')2.

Since the cut-off frequencies at 'Y = 0 and 'Yd =11' are available from the roots of eqns
(17) and (18), the knowledge of additional intersection points inside the Brillouin zone, provides
us with sufficient information to sketch the dispersion curve qualitatively. The use of interfacial
parameter Qo therefore provides us with a scheme for a qualitative solution, which may be
valuable in more complex problems.

Physically, these two cases correspond to A' =iB' and A = iB respectively. These con
ditions in turn lead to the requirement that the ratio of shear stress, Tze(Z), to displacement,
U,(z), be uniform throughout region II for Qo = iv and throughout region I for Qo = iv', i.e.
Tz,ll (z)/ u,u (z) =Tzel1 (0)/Ui (0) respectively.

The bounding curves for Qo = iv, and iv', are shown in Fig. 1 along with the actual
dispersion curve as calculated in Ref. [1) for the lowest branch, Ko =0, for a solid cylinder. The
parameters used are IJ.IIJ.' = 1140, 110 = 3/5, 1'10 = 3, ele' = 1/4. For these parameters, the
bounding curves for Qo=iv' are 0=511/3; (yd/1T) = (3/4)0+ 11 and for Qo=ip are 0=411/3;
('Yd/11') =(3/5)0 + 11.
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FJI. 1. Dispersion curve with bounds shown for Qo'" ;11(-) and ;llI'(---). End points are shown as ••
intersection of bounds as x and complex roots as 0.
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The scale for n in Ref.[t} is different from that used in this paper by a factor of 2 since (I)

there was nondimensionalized with respect to the lowest thickness shear mode frequency of an
infinite plate of half width a while here a half width h. equal to a/2 for a solid cylinder, is used.
Thus values from Ref.[l] used for comparison here must be divided by 2. Thus, the cut off
frequencies are at n=0, 0.290, 1.168, 1.359, 1.628, 1.872, 2.620, 2.772, etc. The intersection
points of the bounding curves lie for Qo =i ... at (1.8. 1.33) for." =I, m=I and at (3.6, 2.67) for
." = 2, m = 2 while for Qo = ;...', the first point lies at (2.25, 1.67) for." = I, m = t and the others
lie beyond the range of calculated values. Tbe complex roots lie at (l +0.177;, 0.764) and
(I +0.729; 0.679) for Qo = 0, co respectively on the first complex branch, at (2 +0.055;, t .361) and
(2 +0.080;, 1,1624) for Qo = 0, co respectively on the second branch, etc.

. The effort in calculating all of these bounds and solution points and the end points of the
Brillouin zones is considerably less than that involved in determining the complete dispersion
spectrum, even for this simple problem, yet these few calculations are sufficient for a
reasonably accurate sketch. It is anticipated tbat this reduction in effort will apply to more
general problems as well.
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